
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 6; April-June, 2015 pp. 533-537
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/acsit.html

A Framework for Software Requirement
Elicitation and Prioritization

Mizbah Fatima1 and Mohd. Shahid Sagar2
1M.Tech Scholar Deptt. of CSE Al Falah School of Engg. & Technology Faridabad, Haryana.

2Deptt.of CSE Al Falah School of Engg. & Technology Faridabad, Haryana.
E-mail: 1mizrizvi16@gmail.com, 2er.shahidsagar@gmail.com

Abstract—One of the most crucial phases of software development
is concerned with the proper gathering of requirements. The success
of a software system depends mainly on to what extent it meets the
objective for which it was created. Requirement Engineering (RE) is
the process of recognizing that purpose. Requirements engineering
comprises of activities such as requirements elicitation, analysis,
modeling, specification, verification, and management. There are
various approaches for performing each of the above activities. In
this paper the emphasis is on the extraction of the requirements and
then organizing those requirements in a prioritized fashion. For this I
have proposed a framework for elicitation of the software
requirements using the GORE approach involving goal model of the
KAOS methodology and the prioritization of the software
requirements is done using TOPSIS method. This paper shall give an
overview on the techniques used in the framework.

Keywords: Requirements; Requirements Elicitation; Requirements
Prioritization; GORE approach; KAOS; TOPSIS;

1. INTRODUCTION

Requirements’ gathering is considered as one of the most
important phases of software development and is usually
concerned with determining whether or not the project being
developed would be successful or not. This success of a
software system depends mainly on to what extent it meets the
objective for which it was created. Requirement Engineering
(RE) is the process of recognizing that purpose [1]. This
objective can be achieved by determining the accurate
requirements of the software system.

Requirements are statements that specify what the system
must do, how it must act, the properties it must exhibit, the
traits it must possess, and the constraints that the system and
its development must satisfy. The Institute of Electrical and
Electronics Engineers (IEEE) defines a requirement as:

-A condition or capability needed by a user to solve a problem
or achieve an objective;

-A condition or capability that must be met or possessed by a
system or system component to satisfy a contract, standard,
specification, or other formally imposed document;

- A documented representation of a condition or capability as
in definition 1 or 2 [2].

The Requirements engineering activities can be carried out
using the various available approaches. However in this paper
we shall focus on the approaches that would lead to the
extraction of the requirements and then their prioritization.

2. REQUIREMENT ELICITATION

Software Engineering aims at producing high-quality software
that is within budget restrictions and project schedules.
However majority of the software projects fail on these major
issues such as quality, schedule and cost [4]. The significant
reasons behind the software failure pertain to poor
requirements. The very first phase of software engineering is
the requirement engineering phase and comprises of various
activities. Requirement Elicitation, one of the constituent
activities of requirement engineering, however forms an
extremely useful step in the development of any software
system. Wrong elicitation practice is usually the primary
reason for failure of most software systems. The process of
searching, revealing, obtaining, and elaborating requirements
for software systems is often referred to as Requirement
Elicitation. The requirements are elicited rather than just
captured or collected; that is there are discovery, emergence,
and development elements to the elicitation process [5].
Requirements elicitation is further decomposed into activities
of fact-finding, information gathering, and integration.

Requirements elicitation is usually carried out using an
elicitation methodology or a series of techniques [5]. These
techniques are used by the analyst to elicit requirements from
stakeholders and other sources. These elicitation techniques
can be broadly classified into the following: Traditional,
Collaborative, Cognitive, and Contextual. The Traditional
requirements elicitation techniques comprise of a large class
of general information gathering techniques [1]. The
Collaborative techniques involve working in cooperation with
different stakeholders to elicit the requirements. The Cognitive
techniques usually involve those techniques that are concerned
with mental processes such as thinking, understanding, and

Mizbah Fatima and Mohd. Shahid Sagar

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 6; April-June, 2015

534

learning and were originally developed for knowledge
acquisition for knowledge-based systems [7]. The Contextual
requirements elicitation techniques involve elicitation of
requirements taking place at the workplace of the customer.
That is the requirements are gathered with the end user
perspective. These techniques are useful in getting detailed
knowledge about the work area of the customer that would not
be uncovered by the use of other, more conventional methods
[8]. The resulting product from the elicitation phase is a subset
of the goals [6]. This leads to the concept of Goal Oriented
Requirements Engineering (GORE) approach that is useful in
defining, eliciting, organizing, analyzing and refining the
requirements, so that the system requirements can meet the
customer needs [8]. The Goal oriented requirements elicitation
helps in identifying the requirements in the form of high level
goals that should be incorporated in the software while
conforming to the stakeholders needs. It mainly comprises of
the following activities: goal elicitation, goal refinement and
various types of goal analysis, and the assignment of
responsibility for goals to agents. The main GORE approaches
discussed in literature include: NFR framework, i*/ TROPOS,
KAOS, GBRAM [8]. However this paper shall focus on
KAOS in particular.

2.1 KAOS - Knowledge Acquisition in automated
Specification

KAOS or Knowledge Acquisition in autOmated Specification
is a goal oriented requirements engineering approach,
developed by University of Oregon and University of Louvain
[9]. This methodology is concerned with constructing
requirements models and obtaining the requirements
documents from KAOS models [10]. The KAOS uses the four
models: goal model, responsibility model, object model,
operation model [10].

KAOS methodology involves development of the
requirements model and comprises of the following steps:

-Build a Goal Model depicting the requirements in the form of
goals in AND/OR graph.

-Build a Responsibility Model in order to achieve those goals
through the help of agents.

-Build an Object model along with building all the consistent
and complete glossary of the problem-related terms that are
used to write the requirements.

-Build an Operational model describing the behavior of the
agents responsible for achieving the goals they are responsible
for.

-Build the requirements document based on the requirements
model.

-Validate your requirements by first reviewing the model.

The goal model is considered the base and starting point of the
whole method. It declares the goals of the composite system

and thus forms the basis for obtaining all the other models
through these goals. The goal model represents a set of
interrelated goal diagrams that are used to deal with a
problem. The main idea behind this approach is to represent
system requirements as business goals and objectives and
hence focus on realizing these business goals. Goals are
typically all the functional and non-functional requirements
that should be incorporated in the system that is being
developed, often through the assistance of some agents. After
the preliminary analysis of the system and identification of the
goals by the requirements engineer, these goals are refined
into progressively simpler goals until they can be easily
implemented. Thus sub goals are derived from the high level
goals and are further refined into more concrete sub goals.
This acyclic directed graph called the goal graph or the
AND/OR graph has nodes which represent the goals to be
achieved by the system and its edges express logical
dependency relationships between the connected goals. The
goal graph has two types of goal decomposition: the AND
decomposition and the OR decomposition. The AND
decomposition signifies that if all of the sub goals are
achieved, their parent goal can be achieved or satisfied while
in OR decomposition, the achievement of at least one sub goal
leads to the achievement of its parent goal.

The KAOS Responsibility model is a compilation of derived
responsibility diagrams. It involves entities called agents
which may be humans or automated components that are
concerned with achieving the goals/requirements. The
assignment of the agents to fulfill the particular goal is done
according to the goal model. The goals are always assigned to
a number of agents. However, whenever there is a single agent
response for the goal, it indicates that there is no room for any
further goal refinement and this difference gives the analyst a
criterion to stop refining goals into sub goals.

The Object model is basically concerned with linking the
application domain and establishing constraints on the
operational system. The objects could be categorized as
entities, agents and associations where “entities” describe and
translate the state of the object but do not carry out operations;
the “agents” are concerned with performing the operations
whereas “associations” are entities that are dependent on the
object and do not have the ability to carry out the operations.

The Operation model represents all the behaviors that agents
must have to accomplish their needs. Behaviors are basically
operations performed by agents. These operations are used to
manipulate the objects described in the object model: they can
create objects, provoke object state transitions or trigger other
operations through sent and received events [10]. An operation
diagram thus describes how the agents need to cooperate in
order to make the system work.

In KAOS, there is a template document which contains all the
information extracted from the four models to specify the
requirements document. The glossary part is derived from the
object model; the requirements are specified according to the

A Framework for Software Requirement Elicitation and Prioritization 535

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 6; April-June, 2015

goal model from top (the business/strategic goals) to bottom
(the requirements). Requirements on the system architecture
are obtained from the responsibility model and requirements
for the system behavior from the operation model. This entire
process leads to extracting the system requirements and
ultimately resulting in a complete, consistent and
unambiguous document. Thus the output of the four models is
a complete requirements document. Lastly the requirements
gathered through the KAOS methodology can be validated by
reviewing them so as to build a high quality product by
organizing collective reviews of the KAOS model.

KAOS finds its application in various industries such as
mechanics, telecommunication, and health care and hence can
be used for any type of information system. It is considered an
efficient goal oriented requirement elicitation method that uses
the concept of building requirements models. KAOS provides
a systematic and sound way to organize requirements and uses
graphical way to tackle a problem [10]. It allows defining
concepts relevant to the problem description, clarifying the
responsibilities of all stakeholders and also provides a clear
hierarchy for stakeholders enabling easy and efficient
communication [10].

3. REQUIREMENTS PRIORITIZATION

In large and complex projects one of the major concerns is
prioritizing the requirements. It is often needed to prioritize
the requirements so that the highest priority requirements can
be implemented first. There are various stakeholders involved
in the project and may have different requirements with each
of them wanting each and every one of its requirements to be
implemented in the system. Due to time, resource and cost
constraints it is usually impossible to implement all of the
requirements. The stakeholder views may clash during the
requirements elicitation phase and hence the prioritization of
requirements may become quite a daunting task in itself. By
considering high-priority requirements before low-priority
ones, one can notably reduce project costs and duration [11].
Requirement prioritization process identifies the most
important candidate requirements of a software project that
should be included in a certain release, and for this purpose
different techniques are used.

Some of the common existing techniques for requirement
prioritization are already provided in literature [13, 14]. Any
of these techniques can be relied upon usually in case of a
small project. However for large scale projects having
thousands of requirements and multiple number of
stakeholders there is need for a requirements prioritization
method that should accommodate a number of issues such as
size of the project, negotiation of requirements, feasibility
measure, fuzzy concerns of stakeholders and multiple criteria
viz. cost, performance, risk etc.[15].

According to observation the prioritization methods provided
in literature [13, 14] may not be perfectly suited to meet
simultaneously all the requirements of an application. A most

suitable prioritization method for one application may not be
an ideal fit for another application. A wrong selection of a
requirements prioritization method may result in wastage of
resources causing customers’ dissatisfaction.

3.1. Multi-Criteria Decision making method for
Requirement Prioritization

The different stakeholders involved in the project may have
dissimilar needs with each of them wanting each and every
one of its requirements to be incorporated in the system. In
addition to this there may be disagreement among the
stakeholders over different views during the requirements
elicitation phase. Thus the process of requirements
prioritization comes into play for allowing stakeholders to
decide on the core requirements for the system and to deal
with conflicting requirements, and resolve disagreements
between stakeholders. Thus decision making is done by
choosing the most appropriate available alternative. It is at this
point that the concept of Multi-criteria decision making needs
to be introduced here.

Decision-making involves finding the best option from all of
the possible alternatives. Multiple criteria decision making
(MCDM) refers to making decisions in the presence of
multiple, usually conflicting criteria [16]. MCDM usually
yields the most excellent choice out of significant alternatives
with respect to a number of criteria. A number of Multi-
Criteria Decision Making methods have been reported in
literature, namely AHP, fuzzy AHP, TOPSIS etc. However we
shall keep our emphasis on TOPSIS in particular.

TOPSIS is a MCDM method suitable for small sized projects
where no hierarchical decisions are required [17].

3.2. TOPSIS- Technique for Order of Preference by
similarity to Ideal Solution

The Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) is a multi-criteria decision analysis
method, developed by Hwang and Yoon [18]. The main idea
behind TOPSIS is that the chosen alternative should have the
shortest geometric distance from the positive ideal solution
and the longest geometric distance from the negative ideal
solution [19]. In this method the alternatives are scored against
a set of criteria. It is a method that compares a set of
alternatives by identifying weights for each criterion,
normalizing scores for each criterion and calculating the
geometric distance between each alternative and the ideal
alternative, which is the best score in each criterion.

In this method it is assumed that the criteria are monotonically
increasing or decreasing.

Normalization is usually vital as the parameters or criteria are
often of incompatible dimensions in multi-criteria problems
[20] [21].

The basic terminology used in TOPSIS method is as follows:
The alternatives here are the options/ requirements which are

Mizbah Fatima and Mohd. Shahid Sagar

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 6; April-June, 2015

536

to be evaluated for selection of the best; the criteria or
attributes are those entities that will impact the selection of
alternatives/ requirements; the weights estimate the relative
importance of criteria. (Each attribute is given rating in the
scale of 0-10 or 0-100 by a team of experts or decision
makers.); decision matrix is a table used for making selection
from a range of options.

In TOPSIS method there are assumed to be two different types
of alternatives: The Ideal alternative is one which has the best
attribute values(i.e. maximum benefit attributes and minimum
cost attributes) where as the Negative ideal alternative is one
which has worst attributes (i.e. minimum benefit attribute and
maximum cost attributes).

For the detailed algorithm of TOPSIS the reader may refer to
[22, 23, 24]. However the mathematical concept may be
described as follows. The scoring may be against an absolute
scale (e.g. dollars, effort-hours etc.) or a relative scale (e.g. 1-9
Likert scale or 1-3-9 etc.) Each criterion has a particular
direction of preference (i.e. the more or less of that criterion is
preferred for the prioritization. For example, effort may be less
effort the better depicted with “–” symbol; or the other way
round if higher effort implies higher priority, depicted with a
“+” symbol) . The prioritization algorithm is based on the
Vector Space Model of computation. Each alternative is
assumed to be a multi-dimensional vector in vector space. The
ideal alternative S’ is the one which has the best value for each
of the criteria. Consequently, S* is the non-ideal alternative –
the one with the worst values for each of the criteria.
(Depending on the direction of preference of the criteria (+/-)
the best/worst is the maximum or minimum score in the set of
alternatives for that criterion.) The algorithm rank orders the
alternatives so that the distance from the ideal solution (S’) is
minimized and that from the non-ideal solution (S*) is
maximized – hence the name, Technique for Ordered
Preference by Similarity to Ideal Solution (TOPSIS).

4. CONCLUSION AND FUTURE WORK

The use of the proposed framework simplifies the elicitation
and prioritization of requirements. The AND/OR Graph or
Goal graph from the KAOS methodology provides a list of
elicited requirements in a graphical manner whereas
requirements prioritization focuses primarily on determining
right requirements to meet stakeholders’ apprehensions.

This work captures the requirements from the various
stakeholders and employs Multi-Criteria Decision-Making
approach as prioritization method thereby assisting the
developer to address stakeholders’ expectations without
wasting resources and hence developing a system of high
quality.

TOPSIS allows us to prioritize all the candidate requirements
enabling easy decision making using both negative and
positive criteria. It allows that a number of criteria can be
applied during the decision process, and is advantageous over

other techniques as it is simple and faster than AHP, FDAHP,
SAW.

As a future work we may conclude that this framework may
be applied to any project during the requirement engineering
phase.

5. ACKNOWLEDGEMENTS

I have great pleasure to express my deep sense of gratitude
and gratefulness to Prof. (Dr.) Anil Kumar, Vice Chancellor,
Al-Falah University, Prof. Saoud Sarwar, Head, Department
of Computer Science and Engineering, and my guide Mr.
Mohd Shahid Sagar, Assistant Professor, Department of
Computer Science and Engineering, Al-Falah School of
Engineering and Technology for providing me with all
necessary facilities in carrying out my work and directing me
to move in the right path of research.

I express my sincere thanks to all my teachers and friends, as
well as my parents and family for their generous help, moral
support and involvement in my betterment.

REFERENCES

[1] Nuseibeh, B., & Easterbrook, S. (2000, June 4 - 11).
Requirements Engineering: A Roadmap (2000). Paper presented
at the the 22nd International conference on Software
Engineering (ICSE 2000), Limerick, Ireland.

[2] IEEE (1990a). IEEE Standard 610.12-1990, IEEE Standard
Glossary of Software Engineering Terminology

[3] Sommerville (1997a) Sommerville, I. & Sawyer, P.
Requirements Engineering: A Good Practice Guide. New York,
NY: John Wiley & Sons, 1997.

[4] Hofmann, Hubert F. and Franz Lehner, “Requirements
Engineering as a Success Factor in Software Projects”, IEEE
Software, July/August 2001, pp. 58-66

[5] Didar Zowghi, Chad Coulin. Requirements Elicitation: A
Survey of Techniques, Approaches, and Tools: Engineering and
Managing Software Requirements 2005, pp 19-46

[6] Rzepka, William E.[89] A Requirements Engineering Testbed:
Concept, Status, and First Results. In Bruce D. Shriver (editor),
Proceedings of the Twenty-Second Annual Hawaii International
Conference on System Sciences, 339-347. IEEE Computer
Society, 1989.

[7] Shaw, M. & Gaines, B. (1996). Requirements Acquisition.
Software Engineering Journal, 11(3): 149-165

[8] Alexei Lapouchnian, “Goal-Oriented Requirements
Engineering: An Overview of the Current Research” Depth
Report, University of Toronto, 2005

[9] A. Dardenne, A. van Lamsweerde and S. Fickas, “Goal Directed
Requirements Acquisition,” Science of Computer Programming,
Vol. 20, No. 1-2, April 1993, pp. 3-50

[10] Respect IT, A KAOS Tutorial, Objectiver, 2007.
[11] Hofmann, Hubert F. and Franz Lehner, “Requirements

Engineering as a Success Factor in Software Projects”, IEEE
Software, July/August 2001, pp. 58-66

[12] J. Karlsson, “Software requirements prioritizing,” in: Proceeding
of 2nd IEEE International Conference on Requirements
Engineering, pp. 110–116, 1996.

A Framework for Software Requirement Elicitation and Prioritization 537

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 6; April-June, 2015

[13] J. Karlsson, C. Wohlin and B. Regnell, “An evaluation of
methods for prioritizing software requirements,” Information
and Software Technology, pp. 939-947, 1998.

[14] Firesmith D (2004) Prioritizing requirements. J. Object Technol
3(8):35–47

[15] Karl E.Wiegers, Software Requirements, 2nd edition,
Woodpecker publishers, ISBN: 81-7853-071-6

[16] George J. Klir, Fuzzy Sets and Fuzzy Logic, PHI publications,
1995,ISBN:81-203-1136-1

[17] Serkan, B.: Operating System Selection using Fuzzy AHP and
TOPSIS Methods. Mathematical and Computational
Applications 14(2), 119–130 (2009)

[18] Hwang, C.L.; Yoon, K. (1981). Multiple Attribute Decision
Making: Methods and Applications. New York: Springer-
Verlag.

[19] Triantaphyllou, E., 2000. Multi-criteria Decision Making
Methods: A Comparative Study. Kluwer Academic Publishers,
Dordrecht.

[20] Yoon, K.P.; Hwang, C. (1995). Multiple Attribute Decision
Making: An Introduction. California: SAGE publications.

[21] Zavadskas, E.K.; Zakarevicius, A.; Antucheviciene, J. (2006).
"Evaluation of Ranking Accuracy in Multi-Criteria Decisions".
Informatica 17 (4): 601–618.

[22] K. Yoon, ―Systems selection by multiple attribute decision
makingǁ, Ph.D. Dissertation, Kansas State University, 1980.

[23] C.L. Hwang and K. Yoon, ―Multiple Attribute Decision
Making: Methods and Applicationsǁ, Springer-Verlag, New
York, 1981.

[24] R. Wang, ―Performance evaluation method - Technique for
order preference by similarity to ideal solution (TOPSIS),
researcher.nsc.gov.tw/public/caroljoe/Data/02182133671.ppt.

